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We present an experimental investigation of the flow structure and vorticity field
in the wake of a NACA-0012 airfoil pitching sinusoidally at small amplitude and
high reduced frequencies. Molecular tagging velocimetry is used to quantify the
characteristics of the vortex array (circulation, peak vorticity, core size, spatial
arrangement) and its downstream evolution over the first chord length as a function
of reduced frequency. The measured mean and fluctuating velocity fields are used
to estimate the mean force on the airfoil and explore the connection between flow
structure and thrust generation.

Results show that strong concentrated vortices form very rapidly within the first
wavelength of oscillation and exhibit interesting dynamics that depend on oscillation
frequency. With increasing reduced frequency the transverse alignment of the vortex
array changes from an orientation corresponding to velocity deficit (wake profile) to
one with velocity excess (reverse Kármán street with jet profile). It is found, however,
that the switch in the vortex array orientation does not coincide with the condition
for crossover from drag to thrust. The mean force is estimated from a more complete
control volume analysis, which takes into account the streamwise velocity fluctuations
and the pressure term. Results clearly show that neglecting these terms can lead to
a large overestimation of the mean force in strongly fluctuating velocity fields that
are characteristic of airfoils executing highly unsteady motions. Our measurements
show a decrease in the peak vorticity, as the vortices convect downstream, by an
amount that is more than can be attributed to viscous diffusion. It is found that the
presence of small levels of axial velocity gradients within the vortex cores, levels that
can be difficult to measure experimentally, can lead to a measurable decrease in the
peak vorticity even at the centre of the flow facility in a flow that is expected to be
primarily two-dimensional.

1. Introduction
Unsteady airfoil flows have received considerable attention in the literature

originally due to the need to understand and alleviate the undesirable effects of
flutter, buffeting and dynamic stall (Theodorsen 1935; Von Kármán & Sears 1938;
McCroskey 1982). These flows have also been the subject of extensive studies with
biological applications in connection with the propulsion of flying and aquatic
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animals (Wu 1971; Lighthill 1975). Flapping wing propulsion has been the subject of
numerous experimental studies (Oshima & Oshima 1980; DeLaurier & Harris 1982;
Freymuth 1988; Koochesfahani 1989; Triantafyllou, Triantafyllou & Grosenbaugh
1993; Anderson et al. 1998) with typical chord Reynolds numbers in the range
104–105 and computational studies, both inviscid (Katz & Weihs 1978; Platzer,
Neace, & Pang 1993; Jones & Platzer 1997) and viscous (Stanek & Visbal 1989;
Liu & Kawachi 1999; Ramamurti & Sandberg 2001). The connection between the
generated wake structure and kinematics of nature’s flyers/swimmers is a current
subject of active research (Spedding, Hedenström & Rosén 2003; Rosén, Spedding
& Hedenström 2004; Dabiri et al. 2005). There is also a resurgence of interest in
unsteady aerodynamics of flapping wings because of potential applications in micro
air vehicle design.

The study of the wake structure of flapping wings is made complicated by the fact
that it is influenced by a large number of parameters such as motion type (e.g. heave,
pitch, etc.), amplitude, frequency, rigid or flexible surfaces and two-dimensional versus
three-dimensional moving surfaces. Even in the simplest case of a two-dimensional
airfoil that is harmonically oscillating in pure pitch with low amplitude, the vortical
field in the wake is significantly affected not only by the oscillation frequency but also
by the shape of the pitch waveform which can result in very intricate vortex patterns
(Koochesfahani 1989). Despite the complexities introduced by the various influences,
it is well-recognized that the wake of unsteady airfoils is highly vortical and that the
essential ingredients of the problem are the generation of vorticity, its shedding and
roll up and subsequent evolution/dynamics. For example, thrust development on a
flapping airfoil has been explained in terms of the generation of a reversed vortex
street and its corresponding jet-like average velocity profile in the wake, as originally
described by Von Kármán and Burgers (1943) for a flat plate in transverse oscillation.
It is instructive to note that in a large fraction of experimental studies of flapping
wings the behaviour of the vorticity field is not directly measured but is inferred from
flow visualization (Oshima & Oshima 1980; Freymuth 1988; Koochesfahani 1989) or
composite of single-point velocity measurements (Koochesfahani 1989; Wilder et al.
1996). More recent studies are applying whole-field velocimetry methods to quantify
the properties of the vorticity field in these class of flows (Freymuth 1988; Bohl 2002).

An important issue relevant to studies of flapping wings is the experimental
estimation of the mean force (drag/thrust) from wake data. The interest in this
approach stems from the difficulty of direct force measurement in flapping wings
or actual flying animals, and the additional measurement challenges posed by the
very small forces involved in low Reynolds number flight. It is commonplace to
estimate the mean force based on the mean streamwise velocity profile using the
integral momentum theorem applied to a control volume surrounding the airfoil
(Koochesfahani 1989; Anderson et al. 1998; Spedding et al. 2003). In particular,
in the work of Koochesfahani (1989), which is the subject of further scrutiny in the
current study, only the mean streamwise velocity profiles were used because data were
not available for the velocity fluctuation and pressure terms that would be needed for
a complete analysis of momentum integral. Nevertheless, those force estimates have
been used in comparative studies with subsequent experiments and computations,
resulting in very good agreement (Triantafyllou et al. 1993), reasonable agreement
(Liu & Kawachi 1999) and very poor agreement (Ramamurti & Sandberg 2001). It
is expected that the accuracy of such estimates comes into question with increasing
reduced frequency because of both the increased velocity fluctuation level and the
reduced pressure in the cores of the concentrated vortices in the wake. A study based
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on an inviscid Kármán vortex street model of the wake suggests that the use of mean
velocity surveys tends to overestimate the thrust force (Streitlien & Triantafyllou 1998).
This analysis is qualitative, however, as it does not take into account the viscous
characteristics of the vortex street, nor does it account for the pressre reduction in the
viscous core. In addition, it is difficult to quantify the inaccuracies in force estimates
in actual experiments based on the vortex street model since it requires knowledge of
vortex array properties (e.g. circulation, streamwise and lateral spacing, etc.).

The work presented here focuses on quantifying the properties of the vortical field
in the wake of a NACA-0012 airfoil pitching harmonically at low amplitude under
similar conditions as the previous flow visualization work of Koochesfahani (1989).
Because of low amplitude, potential complexities connected to leading-edge flow
separation are removed. The emphasis is primarily on the cases with high reduced
frequency which may lead to thrust generation for which quantitative data comparable
to those presented here do not exist. We utilize Molecular Tagging Velocimetry (MTV)
for whole-field measurements of the velocity and vorticity fields over the first chord
length downstream of the trailing edge. These data enable the continuous spatial
analysis of the development of vortex array and its properties (e.g. circulation, peak
vorticity, core size, spatial arrangement, etc.) over the first chord length and allow
us to explore the connection between those properties and generation of thrust. We
use these data further to quantify the inaccuracy in mean force estimates that are
arrived at with the use of only mean streamwise velocity profiles. Such detailed data
that are obtained for well-defined experimental conditions should prove useful for
validation of computational and modelling efforts. We note that even though the flow
is laminar for the Reynolds number considered here, there are spatial and temporal
resolution challenges involved in computing such highly unsteady flows; for example,
the spatial resolution in the trailing-edge region plays a critical role in capturing the
wake vorticity field with high fidelity (Stanek & Visbal 1989).

The paper is organized as follows. Section 2 gives an overview of the experimental
set-up, the measurement method and accuracy estimates. Discussion of results is
presented in § 3.1 for the detailed behaviour of the vorticity field, followed by the
measurements of the velocity field in § 3.2. Finally, the methodology for estimating
the mean force is developed in § 3.3 and the results are compared with previous
experiments and computations.

2. Experimental set-up
This section gives an overview of the essential elements of experimental

arrangement, the measurements technique and data processing. Further details are
described in Bohl (2002).

The experiments were conducted in the Turbulent Mixing and Unsteady
Aerodynamics Laboratory at Michigan State University in a closed-return water
tunnel (Engineering Laboratory Design, ELD) water tunnel with a 61 cm ×
61 cm × 243 cm test section. A NACA-0012 airfoil with chord length C = 12 cm was
placed in a freestream velocity U∞ ≈ 10.5 cm s−1, resulting in a chord Reynolds number
Rec = 12 600. This Reynolds number was chosen to closely match the conditions
reported in Koochesfahani (1989). The hollow-core airfoil was constructed of a
fibreglass laminate using a CNC-machined aluminum mold. The final shape of
the constructed airfoil closely matched the NACA-0012 profile, with its thickness
varying less than (8 × 10−4C) from the nominal profile over the entire airfoil
(Gendrich 1998). The airfoil was held horizontally in the water tunnel between two
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Figure 1. Schematic of semi-infinite vortex array in the wake of an airfoil pitching with
small amplitude. Note the coordinate system used in this work.

streamlined acrylic false wall assemblies which were hollow and housed the airfoil
mounting hardware and drive linkages. The resulting span of the airfoil was 48.5 cm,
leading to a geometric aspect ratio of 4. The airfoil oscillated sinusoidally in pitch
about its 1/4-C axis with an amplitude αo of 2◦ (i.e. peak to peak amplitude of
4◦) about a zero mean angle of attack (AOA) and a frequency f in the range
1.18–3.21 Hz. This corresponds to a reduced frequency k = (2πf C)/2U∞ in the range
4.1–11.5. The motion of the airfoil was controlled by a DC servo motor driven by a
Galil DMC-1030 digital control system and monitored by a high resolution optical
encoder. The deviation of the actual motion of the airfoil from the ideal sine wave
was measured to correspond to a peak deviation of 0.07◦ and an r.m.s deviation over
a cycle of 0.02◦ (Bohl 2002). A schematic of the flow geometry is shown in figure 1.

The measurements presented in this work were made using MTV. Molecular tagging
velocimetry is a whole-field optical technique that relies on molecules, uniformly mixed
in the fluid medium, which can be turned into long lifetime tracers upon excitation
by photons of an appropriate wavelength. Typically a pulsed laser is used to ‘tag’
the regions of interest, and those tagged regions are interrogated at two successive
times within the lifetime of the tracer. The measured Lagrangian displacement of the
tagged regions provides the estimate of the fluid velocity vector. One might think
of the MTV technique as the molecular counterpart of particle image velocimetry
(PIV) where fluid molecules, rather than seed particles, are marked and tracked.
Details of this experimental technique are reviewed elsewhere (Koochesfahani 2000;
Koochesfahani & Nocera 2007). The measurements in the current study utilized a
grid of intersecting laser lines for tagging purposes, see figure 2, with each intersection
providing the two components of the velocity vector projected onto the viewed plane
(i.e. u, v).

Water-soluble phosphorescent molecules, with a lifetime of τ ≈ 3.5ms, were the
particular long lifetime tracer used in this work. The properties and utilization of this
tracer have been previously described (Gendrich, Koochesfahani & Nocera 1997). A
pulsed excimer laser (Lambda-Physik, LPX 210i) with 20 ns pulses at a wavelength of
308 nm provided the photon source for the experiments. MTV image pairs (640 × 480
pixel, 8 bit) were captured using a gated intensified CCD camera (Stanford Computer
Optics, SCO 4QuickE) at a rate of 60 images/s, resulting in a velocity data rate of
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Figure 2. Typical MTV image pairs and the resultant two-component velocity vector field
in the wake of the oscillating airfoil. (a) Undelayed grid imaged 1 μs after the laser pulse
(‘undelayed’ image); (b) same grid imaged 3.5 μs later (‘delayed’ image); and (c) velocity field
derived from (a) and (b).

30 Hz. In our previous implementations of MTV, the image pairs were usually acquired
by a pair of carefully aligned detectors synchronized using a digital delay generator
(Gendrich, Bohl & Koochesfahani 1997; Gendrich, Koochesfahani & Nocera 1997;
Gendrich 1998). In the current work, however, the image pairs were acquired with
a single intensified camera, where two full-frame images were obtained with a time
delay controlled by the intensifier gate pulse sequence. The field of view used in this
work was typically 5.5 × 4.2 cm and delay time between image pairs was nominally
3.5 ms and was adjusted to limit the maximum displacement of the tagged regions
to about 10 pixels. A direct spatial correlation method (Gendrich & Koochesfahani
1996) was utilized to determine the displacement of the tagged regions.

The flow field under investigation was periodic and could, therefore, be phase
averaged quite effectively. In this work, each experimental run consisted of 1000
whole-field measurements that were divided into 64 phases, φ, and then averaged.
A more detailed explanation of the phase-averaging process can be found in Bohl
(2002). The data-processing strategy allowed the data from multiple field of views to
be combined into one single data set to create the evolution of the flow field map
versus oscillation phase, for each reduced frequency, covering a spatial region from
just upstream of the airfoil trailing edge to x/C =1.1 downstream. Phased-averaged
quantities are indicated by bracketed <> variables.

The accuracy of instantaneous MTV velocity measurements depends on the signal
to noise (S/N) ratio of the image pairs used in the correlation procedure; highly
accurate estimates of displacement of tagged regions (i.e. low sub-pixel error) can
be achieved with high S/N images (Gendrich & Koochesfahani 1996). An intensified
detector, however, is typically noisier than non-intensified CCD detectors. The actual
measurement accuracy in this work was quantified experimentally for the particular
intensifier voltage level of these measurements, and it was found that the displacement
of the tagged regions could be measured with a 95 % confidence level of 0.17
pixel accuracy (Bohl 2002). The corresponding uncertainty level in the velocity
measurements was 0.4 cm s–1. Since there were typically 16 independent velocity
realizations per phase bin, the error in the reported phase-averaged velocities was
reduced by a factor of 4 to 0.1 cm s–1 (95 % confidence level).
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Spanwise vorticity ωz was calculated from the measured (u, v) velocity using a
fourth order accurate central finite difference scheme (Cohn & Koochesfahani 2000).
Uncertainty analysis shows that the uncertainty in spanwise vorticity, δωz, can be
estimated by (Cohn 1999)

δωz =
1.34

h
δu (1)

where δu is the uncertainty in the velocity measurement and h represents the data
spatial spacing (see Appendix). The spatial resolution of the data reported here was
h =0.12 cm, and the aforementioned phase-averaged velocity uncertainty of δu =
0.1 cm s–1 results in an uncertainty level (95 % confidence level) of 1.1 s−1 in the
phase-averaged vorticity. This uncertainty level is to be compared with peak vorticity
magnitudes in the range 25–160 s−1 for the range of reduced frequencies investigated
here.

The vortices in this work are characterized in terms of their peak vorticity
magnitude, circulation, core size and streamwise/transverse location in the wake.
The accuracy of the measurement of the peak vorticity is dependent on the extent of
spatial smoothing caused by the spatial resolution of the measurement (characterized
by the data spatial spacing relative to the vortex core size) as well as the method
used to calculate the vorticity. Based on a previous study of these effects (Cohn &
Koochesfahani 2000) for the results presented here (0.12 cm spatial spacing, 0.4 cm
vortex core radius or approximately 3.3 data points per vortex core) the peak vorticity
values reported are expected to be accurate to better than 2 % of the actual peak
vorticity levels.

3. Results and discussion
The data discussed here were measured at the centre span of the airfoil over a

streamwise distance of −0.1 <x/C < 1.1. The origin of (x, y) coordinates is at the
airfoil trailing edge with the airfoil at the zero AOA (see figure 1). The definition
sketch in figure 3 illustrates the nomenclature of vortex array geometric parameters
that will be used throughout this paper. The vortex array in this figure is shown in the
thrust configuration (i.e. jet-like velocity profile), with vortices of positive (counter-
clockwise) circulation (referred to as ‘positive’ vortices) located at a positive transverse
location and vortices of negative (clockwise) circulation (referred to as ‘negative’
vortices) with negative transverse coordinate. The centre of a vortex is defined by
the coordinates (xc, yc) of its peak vorticity. The vortex array is characterized by its
streamwise spacing, a, and transverse spacing, b. The streamwise spacing is connected
to the oscillation frequency f and vortex convection velocity Uc through af =Uc.
The transverse spacing is defined as b ≡ yc,p − yc,n, where yc,p and yc,n indicate the
transverse coordinates of positive and negative vortices. According to this definition,
the vortex street arrangement with the positive vortex on top, i.e. the jet-like velocity
profile, results in b > 0, whereas b < 0 indicates the arrangement with the negative
vortex on top (i.e. the usual wake profile with a velocity deficit). In the discussion of
results, we first focus on the behaviour and evolution of the vorticity field, followed
by observations about the profiles of the mean and fluctuating velocity, and finally
conclude with results on the estimate of force on the oscillating airfoil.

3.1. Vorticity field

The phase-averaged vorticity fields 〈ωz 〉 for three reduced frequencies of k = 5.2, 5.7
and 11.5 are shown in figure 4. These specific cases were selected for discussion
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Figure 3. Definition of vortex array spacing parameters. Centre of vortex is defined by the
spatial location of peak vorticity.
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Figure 4. Phase-averaged vorticity field in the wake of the oscillating airfoil for three reduced
frequencies, αo = 2◦. Airfoil is shown at an AOA of 0◦ with the airfoil pitching down (trailing
edge moving up). Dashed lines indicate the boundary of the region where laser beams were
blocked by airfoil. Note that the colour assignment to contour levels for the left column is
different in the three cases and the contour levels are adjusted to highlight the peak vorticity.
The right column shows the same data with contour levels adjusted to highlight the lower
vorticity values in the regions at the expense of saturating the high vorticity levels.

because they highlight the essential features of the wake structure at the high reduced
frequencies studied in this work. The phase shown in figure 4, φ = 0, corresponds to
the airfoil at an AOA of 0◦, as it is pitching down (i.e. trailing edge moving up). The
black region above the airfoil marked by a dashed line does not contain any data
due to blockage of laser beam by the airfoil.

For all three cases shown in figure 4 the boundary layer vorticity originating from
the two sides of the oscillating airfoil quickly rolled up into an array of compact
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isolated vortices of alternating sign. The distinction between the three cases is in the
transverse arrangement of the vortex street. For the ‘low’ reduced frequency, k = 5.2,
the vortices with negative (clockwise) sign vorticity were located at a y-location
greater than the vortices with positive (counter clockwise) sign vorticity. In this case,
yc,p < yc,n, resulting in b < 0, and the transverse orientation of the vortices in the
wake was the same as the vorticity in the airfoil boundary layer (i.e. negative vorticity
in the top surface boundary layer and positive in the bottom). As the reduced
frequency increased to k = 5.7, the alternating sign vortices became nearly aligned
along a straight line (i.e. yc,p ≈ yc,n, b ≈ 0). For the high reduced frequency, k = 11.5,
the transverse orientation of the vortices switched compared to the low frequency case
so that the positive vortices were now at a y-location greater than the negative vortices
(i.e. yc,p > yc,n, therefore, b > 0). The progression just described, the rearrangement of
the transverse positions of the vortices in the vortex street with increasing frequency,
is consistent with the previous results arrived at by flow visualization (Koochesfahani
1989).

Several other observations about the initial formation of the vortices in figure 4 are
noteworthy. The vorticity layer shedding from the airfoil trailing edge was noted to
be connected to the first rolled-up vortex for the lower frequency k = 5.2, along with
a thin vorticity layer (i.e. braid) that connected the first three alternating vortices for
this case (see the right column in figure 4 with contour levels adjusted to highlight
the braid regions; the large dynamic range of the vorticity field does not allow the
weak vorticity levels in the braids to be highlighted with the colour lookup table
of the left column). The thickness of the braids and the vorticity level in them
decreased with downstream distance (for a given k) to below detection limits of the
measurements. A similar decrease was observed with increasing frequency, k, for a
fixed downstream location. The high reduced frequency case, k = 11.5, showed no
evidence of the connecting vorticity beyond the first pair of vortices. That the regions
between vortices are devoid of vorticity has also been noted by Wilder et al. (1996).
On the contrary, well-resolved braid regions could be seen over the first chord length
in the case of the lowest frequency k = 4.1 in our experiments (Bohl 2002) (data not
shown here). These results indicate that the downstream formation length Xformation of
the vortices decreased with increasing reduced frequency. It was generally observed
that the isolated vortices were formed within the first wavelength, i.e. Xformation � a.
Using the approximation for the vortex convection speed Uc ≈ U∞ (data in figure 9
show maximum Uc is about 25 % faster than free stream speed), one can show that
the formation length is given as a fraction of chord length by Xformation/C � π/k. For
the three reduced frequencies k = 5.2, 5.7 and 11.5 illustrated in figure 4, the resulting
vortex formation distance is Xformation/C � 0.60, 0.55 and 0.27. We note that the
formation length is remarkably short for high frequencies, e.g. for k = 11.5 the first
vortex is formed within the first 1/4 C.

In order to determine the actual vorticity distribution within a fully formed vortex,
the horizontal profiles of the vorticity field (i.e. vorticity variation with x) through
the centre of a vortex located at x/C = 0.5 was extracted from the vorticity maps of
figure 4. Results are shown in figure 5 for the two cases of k = 5.2, and 11.5. Also
shown for completion are the profiles of azimuthal velocity Vθ (same as v component
of velocity in this case). According to figure 5, the measured vorticity profiles agreed
very closely with a Gaussian distribution of vorticity ω(r) = ωpeak exp(−r2/r2

c ) over
the core region (rc ≈ 0.4 cm) with only small deviations at the outer edge of the
distribution (e.g. the right edge of the profile for k = 11.5). As expected, the agreement
was equally good when comparing the measured profiles of azimuthal velocity against
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Figure 5. Horizontal profiles of (a) spanwise vorticity and (b) azimuthal velocity taken from
a vortex at x/C = 0.5 for k =5.2 and 11.5. The distance (x – xc) is the horizontal distance
measured from the centre of the vortex. Solid and dashed curves indicate curve fits to vorticity

and azimuthal velocity profiles for a Gaussian distribution of vorticity, ω = ωpeak e−((x−xc)
2/r2

c ).

those caused by a Gaussian vorticity field. The increasing deviation as one moves
away from the core region, particularly noticeable for the case k =11.5, reflects
primarily the contributions from the induced velocity of neighbouring vortices. We
note that the maximum azimuthal (swirl) velocity increases with reduced frequency
and can become a sizeable fraction of freestream speed. For example, for k = 11.5
the magnitude of the peak azimuthal velocity is about 1.5 U∞, i.e. the instantaneous
streamwise velocity reverses direction towards upstream with a magnitude as high as
0.5 U∞.

The vortex array pattern and its change with increasing frequency (see figure 4) lead
to interesting consequences for the mean and fluctuating vorticity, ωavg and ωr .m.s , as
illustrated in figure 6. In this figure the mean and r.m.s vorticity fields of the stationary
airfoil (airfoil fixed at zero AOA) are also included for reference and we will discuss
them first because they did exhibit certain unique features. In the case of stationary
airfoil, the opposite sign vorticity from the two sides of the airfoil smoothly left the
trailing edge into the wake region while reducing in magnitude with downstream
distance. The very near-wake was characterized by a steady region of recirculation
that extended to x/C ≈ 0.1 and a wake whose thickness actually decreased until about
x/C ≈ 0.5 (see § 3.2 and Bohl 2002). It was beyond this location that a typical wake
behaviour was observed, with a width increasing with downstream distance along
with a rapidly decreasing peak vorticity. The vorticity fluctuation for the stationary
airfoil was relatively weak and its maximum value occurred in the region around
x/C = 0.5.

For the case of k = 5.2 there were thin regions immediately after the trailing edge
where the mean vorticity was of opposite sign to the corresponding boundary layer
vorticity on that side. These regions corresponded to the initial formation process of
the vortices which were still connected to the boundary layer vorticity (see earlier
discussion). The transverse spreading of these regions and their decrease in magnitude
farther downstream were the signature of the connecting braids. Once the isolated
vortices were formed, two well-defined peaks of opposite vorticity were noted in the
mean vorticity with their transverse location and sign of vorticity consistent with the
pattern of isolated vortices seen earlier in figure 4 (i.e. b < 0 for this case). We also
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Figure 6. Mean and r.m.s vorticity fields, ωavg and ωr .m.s , in the wake of static and
oscillating airfoil for the conditions in figure 3.

note that the spacing between the peaks initially increased, followed by a decrease
to an asymptotic value by x/C ≈ 1. The vorticity fluctuation in this case increased
significantly compared to the stationary airfoil as one would expect from a convecting
array of concentrated vortices. The locations of the two r.m.s vorticity peaks and their
downstream evolution are the signature of the particular vortex array in this case (see
earlier comments).

These general observations about the structure of the mean vorticity in the initial
formation region at the trailing edge also applied to the case of k = 5.7. The remarkable
feature of this case, however, was the fact that beyond about x/C ∼= 0.5 the mean
vorticity was nearly zero throughout. The implication of this result is that the
alternating vortices had to be perfectly lined up along a straight line and the vorticity
distribution of vortices had to be nearly identical except for a change of sign.
A consequence of this vortex array arrangement was the high level of vorticity
fluctuation with a single peak that was confined to a thin region corresponding to the
transverse extent of concentrated vortex cores. As the oscillation frequency increased
to k = 11.5, the mean vorticity developed two well-defined peaks of opposite vorticity
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right at the trailing edge, indicating the rapid formation of the vortex array, as already
discussed in figure 4. The sign of the mean vorticity peaks, however, was opposite of
the case with k =5.2, consistent with the transverse arrangement of the vortices shown
in figure 4 with b > 0. Note that the spacing between the mean vorticity peaks showed
a wavy pattern initially before it approached a fixed spacing farther downstream.
The vorticity fluctuation, in this case, was extremely high with a peak value that was
typically twice the peak of the mean vorticity. The spatial structure of the vorticity
r.m.s reflected the same initial wavy pattern noted in the mean vorticity and two
strong peaks connected to the passage, an alternating vortex array that is separated
laterally.

An important aspect of the mean vorticity fields depicted in figure 6 is the large
spatial gradients in vorticity near the airfoil trailing edge for high reduced frequencies.
We note that in all four cases (one stationary and three oscillating cases) the mean
vorticity field is anti-symmetric about the x-axis (i.e. ωavg(y) = −ωavg(−y)), as expected.
The case of the highest reduced frequency (k = 11.5) had only a slight tilt (about 1◦)
upwards. The downstream variation of the spacing between the peaks of the mean
and r.m.s vorticity discussed above for the three oscillating cases is connected to
the downstream evolution of the individual vortices in the wake. This aspect will be
discussed later more quantitatively when we present the evolution of vortex spacing
b by tracking the motion of individual vortices.

The phase-averaged vorticity data such as those in figure 4 allow us to interrogate
the downstream evolution of vortex properties, which we present here for the three
representative reduced frequencies under discussion. The properties we consider here
are the circulation Γ , core size rc, peak vorticity 〈ωz〉peak and vortex array transverse
spacing b. The first three properties were calculated for vortices of both sign but,
because the properties matched very closely, the results are given here only for the
positive vortex. The vortex circulation was computed from the area integral of the
measured phased-averaged vorticity using two criteria. Only vorticity magnitudes over
a cut-off limit of 2 s−1 were included in order to exclude the measurements below
the vorticity measurement noise floor (see § 2). In addition, the integration area was
limited to a maximum radius of 1 cm from vortex centre (i.e. location of its peak
vorticity) to minimize the contributions from the neighbouring vortices of opposite
sign and the connecting braids; see figure 6 for justification of this selection. The
combination of these two criteria led to a conservative estimate of 2 cm2 s–1 for the
uncertainty in the calculation of circulation (Bohl 2002). Using the same two criteria
in the calculation of circulation, the vortex core size was characterized in terms of
the radius of gyration of the vorticity field, defined by

rc =

√√√√√√√
∫ ∫

r2〈ωz〉 dA∫ ∫
〈ωz〉 dA

. (2)

The radius of gyration is one way to define an effective size for a vortical region
when the vorticity field deviates from the Gaussian distribution, is not symmetric or
is not yet fully formed. It can be shown that for a vortex with a Gaussian vorticity
distribution the radius of gyration is the same as the vortex core radius traditionally
defined by the 1/e point of the Gaussian-distributed vorticity (Cohn 1999). Generally,
the deviation of the vorticity from the Gaussian distribution, especially in the outer
edges of the vortex (see figure 5), leads to a radius of gyration that is larger than the
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Figure 7. Vortex parameters: circulation Γ , vortex core radius rc and peak vorticity 〈ωz 〉peak

as a function of vortex core downstream location xc for k = 5.2, 5.7 and 11.5; αo = 2◦. Estimates
of the effects of viscous diffusion only and combined viscous diffusion and stretching (0.17 s−1)
on the reduction of peak vorticity are shown with dashed and solid lines, respectively.

core radius estimated from the 1/e point for the portion of the data in the central
region of the vortex. For the data presented here, this difference is typically about
15 %–20 %.

The downstream evolution of phase-averaged vortex circulation Γ , core size rc,
and peak vorticity 〈ωz〉peak is illustrated in figure 7 (a–c) for the three representative
frequencies. For each frequency, the vortex circulation remained constant over the
downstream distance investigated, indicating that the vorticity of a vortex remained
within the contour selected for the calculation of circulation and also the vorticity of
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opposite sign did not enter this contour. The increase of circulation with oscillation
frequency that is noted in this figure will be discussed further when the data for all
the reduced frequencies in this study will be presented (see figure 9).

The vortex core size, rc, showed a noticeable decrease initially for the two cases of
k = 5.2 and 5.7, whereas the case of k = 11.5 did not exhibit this behaviour. This trend
is connected to the vortex formation process discussed earlier, i.e. the evolution of the
distributed vorticity field shed from the trailing edge into compact isolated regions of
vorticity took place over a greater downstream distance for the lower range of reduced
frequencies, and for the highest reduced frequency vortex formation was complete
very close to the trailing edge. It is interesting to note that once the vortices were
formed by x/C ≈ 0.5, the core size was the same (rc ≈ 0.4 cm) for the three reduced
frequencies shown in figure 7(b). After the initial formation process, the radius of the
vortices slowly expanded primarily due to viscous diffusion. This aspect is further
discussed next as we isolate the processes that cause the measured variations in the
peak vorticity.

The downstream variation of peak vorticity, depicted in figure 7(c), showed a
continuously decreasing trend for all three cases. We provide an explanation for
this behaviour using the vorticity transport equation and for this purpose we will
focus on the case of the highest reduced frequency k = 11.5. Assuming a primarily
two-dimensional flow field, with ωz(r) as the predominant component of vorticity and
negligible radial component of velocity, the vorticity transport equation reduces to

∂ωz

∂t
= ωz

∂w

∂z︸ ︷︷ ︸
I

+ ν

(
∂2ωz

∂r2
+

1

r

∂ωz

∂r

)
︸ ︷︷ ︸

II

. (3)

Therefore, vorticity can change through two mechanisms: vortex stretching (term I)
and viscous diffusion (term II). Vortex stretching is connected with the spanwise
gradient of axial velocity in the vortex core, ∂w/∂z. It is known that in the flow
studied here, interaction of concentrated vortices with the side walls of the flow facility
leads to a spanwise or ‘axial’ flow in the vortex cores along the axis of the vortex (e.g.
Koochesfahani 1989; Cohn & Koochesfahani 1993; Bohl & Koochesfahani 2004). The
axial flow is away from the side walls towards the centre span and, since by symmetry
the axial velocity is zero at centre span, we expect ∂w/∂z < 0 at the centre plane
measurements in our study. Therefore, any non-zero value of this velocity gradient
would result in a reduction of peak vorticity downstream. The viscous diffusion term,
of course, leads to a reduction of peak vorticity as well.

The evolution of vortex peak vorticity can now be determined by evaluating (3)
at the centre of the vortex (r = 0). On the basis of the earlier discussion showing the
vorticity distribution in the rolled-up vortices as well approximated by a Gaussian
distribution, it can be shown that the evolution equation for the peak vorticity
becomes

∂(ωz)peak

∂t
= (ωz)peak

∂w

∂z︸ ︷︷ ︸
I

− 4π ν

Γ
(ωz)

2
peak︸ ︷︷ ︸

II

. (4)

In the equation above, ν is the kinematic viscosity of the fluid (in this case, water),
Γ is the vortex circulation given by Γ = πr2

c (ωz)peak and it is understood that the
axial velocity gradient ∂w/∂z is that at the centre of the vortex. The evolution of
peak vorticity imposed by term I alone corresponds to an exponentially decreasing
vorticity (for a constant ∂w/∂z < 0), whereas the solution based on term II alone is



76 D. G. Bohl and M. M. Koochesfahani

the known viscous decay of vorticity with a 1/t dependence. The general solution of
(4) for a constant value of ∂w/∂z can be shown to be given by

(ωz)peak

ωo

=
β

(α ωo + β) e−β(t − to) − α ωo

, (5)

where β ≡ ∂w/∂z, α ≡ −4πν/Γ and ωo is the initial condition of peak vorticity at to.
The downstream variation of peak vorticity can now be determined from the above
using the vortex convection speed, i.e. (x − xo) = Uc(t − to).

We compare the results for the case k =11.5 against the prediction of (5) by
specifying the initial conditions at xo = 6 cm (i.e. xo/C = 0.5) where ωo = 160 s–1 (see
figure 7c). For this reduced frequency, the measurements indicate a vortex circulation
Γ =53.5 cm2 s–1 and a convection speed Uc = 13.1 cm s–1 (see figure 9). Over the
downstream range considered here (x −xo = 6

√
cm) and small values of axial velocity

gradient (an assumption that will be justified shortly), we note that β(t − to) � 1
and α ωo(t − to) � 1 and (5) can be well represented by its leading-term expansion in
(t − to), i.e.

(ωz)peak

ωo

= 1 + (α ωo + β)(t − to) + · · ·

= 1 + (α ωo + β)(x − xo)/Uc + · · · (6)

Therefore, to first order, the peak vorticity decreases linearly in downstream distance
at a rate determined by the superposition of the effects of viscous decay and vortex
stretching. The prediction for the variation of peak vorticity caused by viscous decay
only (i.e. β ≡ ∂w/∂z =0), shown in figure 7(c) by the dashed curve, indicates that
about 70 % of the measured 21 % drop in peak vorticity at the end of the observation
domain (x = 12 cm; x/C = 1) is accounted for by viscous diffusion. The remaining
30 % of the overall peak vorticity drop can be accounted for by the vortex stretching
term with an axial velocity gradient of about ∂w/∂z ≈ −0.17 s−1. The decrease of peak
vorticity predicted from the combination of these two effects is shown by the solid
curve in figure 8(c). We note that the estimate of ∂w/∂z that is arrived at here is very
small compared to the velocity gradients represented by the measured peak vorticity
level of 160 s−1 and certainly well below our detection limit for velocity gradients
discussed in § 2. It is important to recognize that very small values of ∂w/∂z, which
may be difficult to measure experimentally, can still lead to a measurable decrease in
the vortex peak vorticity in a flow that is ‘expected’ to be primarily two-dimensional.
In the measurements reported here, the vortex aspect ratio, defined by the ratio of its
length to core diameter, was about 60. Nevertheless, the three-dimensional effects of
the axial flow caused by the bounding tunnel walls could be detected in the behaviour
of peak vorticity even at the centre of the tunnel.

We had earlier connected the spatial structure of the spacing between the peaks of
the mean and r.m.s vorticity to the downstream evolution of the individual vortices
in the wake. We now discuss this aspect quantitatively by presenting the downstream
evolution of vortex spacing b as determined from tracking the trajectories of individual
vortices. Figure 8 illustrates the measured variation of the transverse coordinates of
positive and negative vortices, yc,p and yc,n, along with the vortex array transverse
spacing b ≡ yc,p − yc,n. Results for k =5.2 show that during the formation process the
vortex array initially moved apart over the first half chord downstream to a maximum
separation of about b = –0.89 cm (b/rc ≈ 2.2) before moving back towards each other
and approaching a constant vertical spacing at about x/C ≈ 1 with the negative
vortex on top. The vortex array in the k = 5.7 case moved towards each other initially
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Figure 8. Transverse locations of the positive, yc,p , and negative vortex, yc,n, and the
corresponding transverse spacing, b, of vortex array for k = 5.2, 5.7, 11.5.

and showed an orientation switch at x/C ≈ 0.25. This was followed by a period
of slight separation, with a maximum of about b = –0.18 cm (b/rc ≈ 0.45), and then
recovery to a constant transverse spacing of b ≈ 0 corresponding to an alternating
vortex array nearly perfectly aligned along a straight line. The high frequency case of
k = 11.5 was unique in that the transverse vortex array spacing initially had a weak,
but discernable, oscillatory behaviour with a maximum amplitude of only about
0.4 rc. The oscillation quickly damped out and the vortex array attained a transverse
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spacing with the positive vortex on top (i.e. b > 0). The downstream evolution of the
transverse spacing of the concentrated vortex array that was just described for the
three selected frequencies explains the unique spatial structure of the vorticity mean
and r.m.s discussed earlier in figure 6.

Results presented so far have focused on the detailed behaviour for three repetitive
reduced frequency cases. We now show data in figure 7 for several properties of the
vortex array at a fixed downstream location and how they vary over the entire range
of oscillation frequencies investigated here. The location x/C = 0.5 was selected for
presenting the results since the vortex array was fully formed by this location (e.g.
see figure 4). Data in figure 9 show a linear relationship between the peak vorticity
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and circulation with increasing reduced frequency. There was a nominal three times
increase in the peak vorticity observed over the reduced frequency range indicated
in figure 9. It is interesting that the vortex core radius was nearly constant with
a value rc ≈ 0.4 cm over the entire reduced frequency range. The vortex convection
speed was initially very close to the free stream speed U∞ but started to exceed it by a
noticeable amount as the oscillation frequency kept increasing. For the highest reduced
frequency of k = 11.5 the vortex convection speed was 25 % faster the free stream
speed. The vortex array streamwise spacing (wavelength) a is related to the oscillation
frequency f and vortex convection velocity Uc according to af =Uc. Therefore, the
decrease of vortex array wavelength with increasing frequency, indicated in figure 9,
was slower than being proportional to ∼1/f because of the increase in the vortex
convection speed. The vortex transverse spacing b was initially negative, corresponding
to the negative vortices forming the top row. With increasing frequency, the spacing
decreased towards zero (i.e. alternating vortex array aligned along a straight line) and
then switched to a positive sign with the positive vortices being on top. The intriguing
result is that the vortex spacing seemed to approach a constant value (b ≈ 0.75 cm) at
high reduced frequencies. The vortex array aspect ratio, b/a, showed a trend similar
to transverse spacing b except that at large values of reduced frequency the aspect
ratio continued to exhibit a slight increasing trend due to the reduction of wavelength
a. The largest value of aspect ratio was about 0.19 at the highest frequency shown
in figure 9. We note, for comparison, that the vortex array aspect ratios measured in
these experiments are noticeably lower than the Kármán value of 0.28 for a stable
point vortex street.

3.2. Velocity field

The alterations in streamwise velocity field caused by changes in the vortex array
pattern with increasing frequency are illustrated in figure 10 in terms of the spatial
maps of the mean and r.m.s velocity fields uavg and ur .m.s .. The characteristics of
the stationary airfoil are also included for comparison. The downstream variation of
the mean streamwise velocity at the centreline (y = 0) is extracted from the data in
figure 10 and separately shown in figure 11 to help with the interpretation of results.

The stationary airfoil was characterized by a near-wake with a region of
recirculation that extended to x/C ≈ 0.1. This aspect is more clearly seen in figure 11,
where a very weak reverse flow (i.e. upstream flow) is indicated in this region with
a magnitude of about 0.04 U∞. The recirculation zone was nearly steady as seen by
the very low r.m.s values in figure 10. It is also seen that the wake thickness initially
decreased until about x/C ≈ 0.5 and it was beyond this point that the wake width
started to increase (see the width of the mean and r.m.s distributions in figure 10).
This point also marked the approximate location where the r.m.s fluctuation reached
its maximum value. The wake deficit at the centreline continuously decreased with
downstream distance and by x/C = 1 the average streamwise velocity had reached a
value uavg ≈ 0.85 U∞.

The mean velocity fields for the three representative oscillation frequencies shown
in figure 10 confirm that as the reduced frequency increased from k = 5.2 to k = 11.5
the mean flow’s character changed from a wake with a velocity deficit to a jet with
a velocity excess. The case k =5.7 showed a mean velocity map that deviated very
little from the free stream speed U∞ except in a small region right at the trailing
edge. Examining the mean centreline speed in figure 11 reveals that in all three
cases the mean streamwise velocity at the trailing edge was positive and significant
(uavg > 0.5 U∞) compared to the static case, and it initially increased very quickly.
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Figure 10. Mean and r.m.s streamwise velocity fields, uavg and ur .m.s , in the wake of static
and oscillating airfoil for the conditions in figure 3.

We caution, however, that the actual mean velocity at the trailing edge (x ≡ 0) is
not highly resolved due to the finite spatial resolution of the measurements. In the
case with a wake-like character (k =5.2), the mean centreline speed remained nearly
fixed at uavg ≈ 0.85 U∞ beyond x/C ≈ 0.4, whereas the higher frequency jet-like case
(k =11.5) had a large velocity excess, reaching values as high as uavg = 1.94 U∞. In
the case of k = 5.7, beyond the initial development zone, the centreline speed has a
zero deficit (i.e. uavg =U∞) except for a small ‘dip’ centred around x/C ≈ 0.35. All of
these velocity characteristics are consistent with the vortex array structure that has
been previously described for each case. The small centreline velocity dip that was
just mentioned for k = 5.7, for example, can be explained by the slight separation of
the vortex array (maximum b = –0.18 cm, as discussed earlier) causing a small wake
deficit. The spatial maps of the r.m.s velocity field in figure 10 reveal interesting
features. As the oscillation frequency increased, the measured r.m.s levels continued
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the cases shown in figure 10.

to increase and reached very large values, as high as ur .m.s ≈ 0.75 U∞ for k = 11.5.
The case of k =5.7 was unique in that the streamwise velocity fluctuation approached
zero at the centreline as expected for an alternating vortex array that is aligned along
a straight line. The highest reduced frequency (k =11.5) had a triple-peak structure
with the weakest peak at the centreline. A similar structure also existed over a portion
of the downstream range for the case of k = 5.2. It can be shown that the streamwise
velocity fluctuation develops a third peak at the centreline depending on the transverse
separation b of the vortex array in relation to the vortex core size.

We complete the discussion in this section by presenting the transverse profiles
of the mean streamwise velocity uavg(y) and the r.m.s profiles of streamwise and
transverse velocity fluctuations, ur .m.s (y) and vr .m.s (y), at a given downstream location
(see figures 12, 13). Data at x/C = 1 were chosen for discussion as they relate to the
calculation of the mean force in the next section (§ 3.3).

The mean streamwise velocity profiles depicted in figure 12 provide a quantitative
assessment of the changes in the velocity profile as a result of the vortex array
modification with increasing oscillation frequency. The static and low reduced
frequency case (k = 5.2, for which b < 0) showed a mean velocity deficit or ‘wake’
profile, whereas the high reduced frequency case (k = 11.5 for which b > 0) showed
a significant velocity excess or ‘jet’ profile. For the special case, k = 5.7, where the
vortices were aligned nearly perfectly along a straight line (i.e. b ≈ 0), the mean
profile was uniform with speed U∞. The mean transverse velocity profiles vavg(y),
not included here, were nearly zero (see Bohl 2002). The data over the measurement
domain −0.3 <y/C < 0.3 typically had an average value less than 0.006 U∞ and
varied across the domain by less than 0.009 U∞.

The r.m.s profiles of streamwise and transverse velocity fluctuations, ur .m.s (y) and
vr .m.s (y), at x/C = 1 are depicted in figure 13. The ur .m.s (y) profiles were characterized
primarily by a double-peak structure whose peak level increased with increasing
oscillation frequency. This was caused by the high streamwise velocity fluctuations on
the top and bottom of the vortex array. For the highest frequency case a third small
peak appeared at the centreline, a feature that was already discussed in the spatial
maps in figure 10. When the vortex array was aligned nearly perfectly (k =5.7),
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static and oscillating airfoil for three reduced frequencies, αo = 2◦.

the streamwise velocity fluctuation at the centreline approached a very low level.
A perfectly aligned alternating vortex array would have zero streamwise velocity
fluctuation at centreline since the induced velocity would be in the transverse direction
only. The transverse velocity fluctuation profiles vr .m.s (y) showed peak magnitudes
that varied between 0.35 U∞ and 0.9 U∞ as the pitching frequency increased. We
note that the fluctuations in the transverse velocity were significantly larger than the
streamwise velocity by nearly a factor of 2.

3.3. Mean force

The mean streamwise force on the airfoil (i.e. drag/thrust) can be obtained from
the integral momentum theorem applied to a control volume surrounding the airfoil.
Traditionally, the mean streamwise velocity profile in the wake is utilized to estimate
the force coefficient according to

CF =
2

C

∫ +H

−H

uavg

U∞

(
uavg

U∞
− 1

)
dy. (7)
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A negative value of CF corresponds to drag and a positive value indicates thrust.
In using this expression it is understood that the contributions from the velocity
fluctuation and the pressure term are ignored and that the domain of integration
H is selected sufficiently far away such that the integrand approaches zero. In the
original work of Koochesfahani (1989), (7) was utilized since only the mean velocity
profiles were available at that time. The subsequent computations of Ramamurti and
Sandberg (2001) for the cases investigated by Koochesfahani (1989) reported thrust
values that were significantly lower and the discrepancy was attributed to the missing
terms in (7). In the work described here, a more complete analysis is carried out to
compute the force coefficient from experimental data, which also allows us to assess
the influence of the missing terms in (7).

Figure 14 shows a schematic of the control volume and the various parameters
used in our two-dimensional analysis. The average pressure profile pavg(y) at the
downstream control surface is needed for completing the mean force calculation. Con-
sidering the y-component of the mean Navier–Stokes equation, it can be shown that

∂pavg

∂y
= −ρ

∂v2
r .m.s

∂y
(8)

if the mean transverse velocity υavg and streamwise gradient (i.e. ∂/∂x) of Reynolds
stress are negligible. Using the whole-field velocity data from our measurements, it
was confirmed that at location x/C = 1, which we use for mean force calculation,
these were, in fact, excellent assumptions. Our measurement domain corresponded to
H/C = 0.3 and resulted in a ‘free stream’ speed Uo at the downstream location which
was slightly different from the upstream speed U∞. It was found that Uo/U∞ varied
between about 1.02 and 0.95 with increasing reduced frequency (e.g. see figure 12).
The fact that the integration domain H was not far enough (i.e. Uo �= U∞) led to two
consequences. Firstly, the free stream pressure po at the downstream location was
different from p∞ by an amount that was determined from Bernoulli’s equation, i.e.
po =p∞ + 1/2 ρ(U 2

∞ − U 2
o ), resulting in the downstream average pressure distribution

being given by

pavg(y) = p∞ + 1
2
ρ
(
U 2

∞ − U 2
o

)
− ρ v2

r .m.s (y). (9)

Considering the large values of transverse velocity fluctuations especially at high
reduced frequencies (see figure 13), the average pressure distribution downstream is
expected to have a significant pressure deficit.
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Figure 15. Airfoil mean force coefficient as a function of reduced frequency. Results are
shown on the basis of only the mean velocity (term I in 10) and also the full (10). Comparison
is made with the results of Koochesfahani (1989) based on mean velocity and computations
of Ramamurti and Sandberg (2001).

The second consequence concerns the calculation of the x-component of momentum
flux through control surfaces (3); see figure 14. In traditional analysis, with H being
far away, the streamwise velocity u3 on those surfaces would be U∞. In the current
analysis, however, u3 varies between U∞ upstream and Uo downstream. We estimate
the x-component of momentum flux through control surfaces (3) using the mass flux,
found the usual way from the balance of upstream and downstream mass fluxes,
and an effective u3 given by u3 = 1/2 (U∞ + Uo) ≡ (1 − ε)U∞. The value of ε varied
between –0.01 and 0.025 over the range of reduced frequencies investigated here.
The influence of the momentum flux approximation given here on the calculation of
force coefficient was small because of the small deviation of Uo from U∞. The largest
uncertainty in CF was found to be about ±0.002 based on comparing the result using
the u3approximation given above versus those arrived at using the limiting values
of U∞ and Uo. This uncertainty occurred at the highest reduced frequency k = 11.5
(i.e. largest ε) and corresponded to about 10 % of the CF value (see figure 15). The
percentage uncertainly quickly dropped with decreasing frequency; for example, at
k = 5.7 the uncertainty had reduced to about 1 %.

Incorporating the various influences described above, and the streamwise velocity
fluctuation, into the control volume analysis around the airfoil results in the following
expression for the force coefficient

CF =
2

C

∫ +H

−H

⎧⎪⎪⎨
⎪⎪⎩

uavg

U∞

(
uavg

U∞
− 1

)
+ ε

(
uavg

U∞
− 1

)
︸ ︷︷ ︸

I

+

(
ur .m.s

U∞

)2

︸ ︷︷ ︸
II

−
(

vr .m.s

U∞

)2

︸ ︷︷ ︸
III

+
1

2

(
1 − U 2

o

U 2
∞

)
︸ ︷︷ ︸

IV

⎫⎪⎪⎬
⎪⎪⎭ dy. (10)
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We note that term I represents the contribution from the mean streamwise velocity
profile (i.e. 7) but modified to accommodate the slight variation of streamwise velocity
along control surfaces (3) in figure 14. We also note that the fluctuation in the
streamwise velocity serves to increase the thrust estimate, whereas the downstream
pressure profile represented by the transverse velocity fluctuation reduces the estimated
thrust.

Figure 15 summarizes the mean force coefficient calculated from the measured
data as a function of reduced frequency. Results are shown based on using only the
mean streamwise velocity, i.e. term I in (10) and also the full form of (10). Figure 16
shows the contribution of each term in (10) to the overall calculation of the force
coefficient. Several aspects of these results are noteworthy. The mean force calculated
based on only mean velocity data agrees very well with the previous estimates of
Koochesfahani (1989) which were also arrived at in the same manner. The important
conclusion is that the mean force, when calculated using the full (10), is in reality
significantly lower and agrees remarkably well with the computations of Ramamurti
and Sandberg (2001). The reduction of the mean force is particularly important at
the higher reduced frequencies where the velocity fluctuations become very strong
(see figure 13). On the basis of our measurements and a term-by-term analysis of
(10), see figures 13 and 16, it is now clear that the increase in mean force due to
the streamwise velocity fluctuation ur .m.s is strongly counteracted by the much larger
transverse velocity fluctuation vr .m.s responsible for lowering the downstream pressure,
resulting in a net reduction of mean force. We note that the reduced frequency for
crossover from drag to thrust was calculated to be about k ≈ 6 based on mean velocity
data (i.e. using Term I only) and corresponded to the flow with an aligned alternating
vortex array (b = 0). However, the actual reduced frequency for the crossover was
found to be k ≈ 9 using the full (10). At this reduced frequency the mean streamwise
profile is already jet-like. This extra momentum flux is required to overcome the
pressure reduction downstream of the oscillating airfoil. Comparison of our results
with the computations of Ramamurti and Sandberg (2001) is limited only to the
mean force data shown in figure 15 since Ramamurti and Sandberg (2001) did not
report the details of the computed vorticity field. It is clear, however, that the spatial
arrangement of the vortex array behind an oscillating object cannot by itself be used
to determine the condition for drag-to-thrust crossover.

4. Conclusions
The structure of the flow and vorticity field around a NACA-0012 airfoil oscillating

at small amplitude (αo =2◦) and high reduced frequencies (up to k = 11.5) was
investigated over the first chord length downstream of the airfoil trailing edge using
MTV. The characteristics of the vortex array were quantified in terms of its spatial
arrangement, the vortex core size, peak vorticity and circulation. The properties of
the mean and fluctuating velocity and vorticity fields were quantified and explained
on the basis of the unique spatial arrangement of the vortex array in each case.

The transverse alignment of the vortices was found to be a function of the reduced
frequency with the orientation switching for k > 5.7. This switch in the vortex array
orientation was marked by a change in the mean streamwise velocity from a velocity
deficit (i.e. wake profile) to a velocity excess (jet-like profile). An important finding
was that the switch in the vortex array orientation did not determine the condition
for crossover from drag to thrust. The mean force on the airfoil was estimated from
a more complete control volume analysis, which took into account the streamwise
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Figure 16. Contribution of individual terms in (10) to the overall force coefficient.

velocity fluctuations and the pressure term. Results clearly showed that it is critical
to include these terms in the calculations, especially for strongly fluctuating velocity
fields characteristic of airfoils executing highly unsteady motions. Otherwise, the mean
force could be overestimated by a large margin.

The peak vorticity of the convecting vortices showed a decrease with downstream
distance more than could be attributed to the effects of viscous diffusion. This
behaviour could be explained using the vorticity transport equation and the presence
of a small value of axial velocity gradient within the vortex cores. An interesting
observation was that the three-dimensional effects caused by such small values of
velocity gradient, which would be difficult to measure experimentally, could still lead
to a measurable decrease in the peak vorticity even at the centre of the flow facility
in a flow that was ‘expected’ to be primarily two-dimensional.

Several intriguing phenomena were noted that require further comments. For
a particular value of reduced frequency, the alternating vortex array was almost
perfectly aligned along a straight line. A consequence of this arrangement was that
the mean streamwise velocity profile was uniform at the same speed as the upstream
approach speed and the streamwise velocity fluctuations reduced to zero at the
centreline. The implication of this result is that a velocity probe (designed to measure
the streamwise velocity) which happens to be located at the centreline would not be
able to detect the presence of a highly unsteady airfoil farther upstream. We note that
the vortex array spacing b exhibited interesting dynamics during the initial formation
process before approaching an asymptotic state. Depending on the reduced frequency,
the spacing initially increased to various degrees, or showed a wavy pattern, before
it finally approached a fixed spacing. Our experiments do not have sufficient spatial
resolution very near the trailing edge to shed light on the underlying phenomena
behind these observations. Further experimental and/or computational studies are
needed to explain these observations based on the flux of vorticity originating at the
airfoil trailing edge and the subsequent vorticity roll-up and dynamics.

This work was supported by the MRSEC program of the National Science
Foundation, Award Numbers DMR-9400417 and DMR-9809688.
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Appendix

Estimate of uncertainty in spanwise vorticity
Spanwise vorticity ωz is calculated from the measured (u, v) velocity using a fourth

order accurate central finite difference scheme, given by

(ωz)i,j =

(
∂v

∂x

)
i,j

−
(

∂u

∂y

)
i,j

,

where (
∂v

∂x

)
i,j

=
−vi+2,j + 8vi+1,j − 8vi−1,j + vi−2,j

12h

and (
∂u

∂ y

)
=

−ui,j+2 + 8ui,j+1 − 8ui,j−1 + ui,j−2

12 h
.

The data spacing, h, is a known constant; therefore, the calculated vorticity depends
on eight variables: four transverse velocities (each with uncertainty δv) and four
streamwise velocities (each with uncertainty δu). In the measurements discussed here,
δv ≈ δu. Standard uncertainty analysis allows the determination of the uncertainty in
spanwise vorticity, δωz, according to

(δωz)
2 =

8∑
n =1

(
∂ωz

∂χn

δχn

)2

, ( 1)

where χn and δχn represent the nth independent variable and its uncertainty,
respectively. Carrying out the uncertainty analysis using the vorticity definition and
the finite difference formulation of velocity derivatives given above leads to the final
result

δωz =
1.34

h
δu.
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